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LIQUID CRYSTALS, 1996, VOL. 21, No. 5, 713-726 

Crossed fields induced periodic deformations in nematics: 
effect of weak anchoring 

by U. D. KINIT 
Raman Research Institute, Bangalore-560 080, India 

(Received Y January 1996; infinalform 23 May  1996; accepted 24 May 1YY6) 

Theoretical studies are reported on the formation of static periodic distortions (PD) in a 
horneotropically aligned nematic insulator under the action of crossed electric (E) and 
magnetic (H) fields impressed in the sample plane. Linear stability analysis is used along with 
the Rapini-Papoular expression for surface free energy. Depending upon the material 
parameters, the direction of periodicity as well as the stripe width may change continuously 
or discontinuously with variation of the angle between H and E. The strength of director 
anchoring influences the phase diagrams as well as the nature of the transition between 
different distortion states. Curiously, some of the phase diagrams resemble those calculated 
recently for a thennotropic transition. 

1. Introduction 
Many interesting effects result from the application 

of E and H fields on nematic samples. These have been 
satisfactorily explained by the continuum theory [ 1-41. 
For instance, a periodic distortion (PD) associated with 
wavevector of periodicity in the sample plane can be 
caused by impressing H on samples with high elastic 
anisotropy [ S ,  61. Due to the presence of flexoelectricity 
[7], PD is known to be formed under the action of a 
static E field [ 81 even in nematics with moderate elastic 
anisotropy. A time varying E field is also known to 
cause PD [9]. Effects of E are generally more interes- 
ting and more complex than those of H because 
director deformations can modify the E field inside the 
sample [lo]. A number of theoretical studies have been 
reported [ 111 to account for the above observations 
and to study possible effects of director boundary tilt 
and director anchoring [12] on the formation of PD 
in nematics. 

The joint application of H and E along two mutually 
perpendicular directions (called the crossed field config- 
uration) has led to the observation of a first order 
Freedericksz transition [ 13, 141 as well as field induced 
biaxiality [ 14-16]. PD has also been reported [ 14, 151 
in a material (5CB) with positive dielectric and diamag- 
netic anisotropies (cA > 0; xA > 0; [ 171). The studies of 
[ 13-15] pertain to initial homeotropic director tilt with 
E being impressed in the sample plane, parallel to the 
sample boundaries; H is the stabilizing field applied 
normal to the plates. Attempts have been made to 
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explain the occurrence of PD [14,15] on the basis of 
non-linear as well as linear perturbation theory [ 18,191. 
It is shown [ 191 that PD can result due to the modifica- 
tion of E inside the sample caused by director field 
perturbations. 

The linear perturbations approach of [ 191 has been 
recently extended [20] to study PD in homeotropically 
aligned samples of materials having different kinds of 
dielectric and diamagnetic anisotropy [ 21, 221 with E 
and H impressed in the sample plane. With the rigid 
anchoring hypothesis, it is shown that in a material such 
as M 1 [ 211 with < 0 and xA > 0, PD may result due 
to a destabilizing H acting in the plane of the sample; 
the direction of periodicity may change discontinuously 
for continuous variation of the angle (u) between H and 
E. In a material such as CCH-7 [22] (cA > 0 and zA < O), 
PD may be caused by the destabilizing E field acting 
against a stabilizing H and the direction of periodicity 
may change continuously with CI. Phase diagrams have 
been drawn for different kinds of PD. 

With the convenience of the rigid anchoring hypo- 
thesis, the analytically derived results can all be scaled 
to be independent of the sample thickness. In reality, a 
more complete picture of the director configurations 
will emerge only by including the finite surface free 
energy density [ 121. With this, the sample thickness 
becomes a parameter in the problem and can be 
expected to influence the results via a change in the 
nature of scaling as well as a change in the size (if 
not the shape) of the phase diagrams for different 
instability Modes. 

Theoretical results of [ 13-15, 18-20] pertain to a 
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714 U .  D. Kini. 

nematic insulator whose electrical conductivity is 
assumed to be zero. Nematics have low conductivities 
and can be treated as insulators in many situations. But 
their conductivity anisotropy is considerable. In some 
materials, the application of E leads to electrohydrodyn- 
amic instabilities (EHD: [23]). Still, one can consider 
the possibility of static distortions through a modifica- 
tion of the applied E field caused by conductivity 
[24,253. The possible influence of conductivity on the 
formation of PD in crossed field configurations cannot 
be ruled out. Rccent studies also show some exotic 
effects such as modification of director anchoring 
strength in nematics with ionic impurities [ 2 6 ] .  

With the above introduction, the motivation for the 
present work becomes clear. As a first step, the governing 
equations are set up for a nematic insulator weakly 
anchored at the boundaries ($2 ) .  Results for M1 and 
CCH-7 are presented in 9: 3 and 9 4, respectively. Section 5 
summarizes the conclusions with a brief discussion on 
the possible effects of conductivity. 

2. Governing equations, boundary conditions 
An insulating nematic sample of thickness 2h con- 

tained between glass plates z = +h (glass is assumed to 
be an isotropic dielectric) is sandwiched between elec- 
trodes at x =  k g  lying in the y z  plane. The electrode 
gap 2g is large compared to the sample thickness 2h 
and the sample is studied near x = 0, midway between 
the electrodes. The nematic is initially oriented along z 
with the unit director field no = (O,O, 1 ) .  The directions 
of the.free axes at both plates are along z. The magnetic 
field is either along z ,  Hll = (0,O. Hll) or in the x y  plane, 
H, = (H,C,, H,S,, 0): x is measured in radians. When 
CI = 0, H, is along x, while for LY = 4 2 ,  it is along y. The 
unperturbed electric field E, = (E,, ,  0,O) inside the 
sample is uniform with Ex,  = VO/2g where V,  is the 
potential difference applied between the electrodes. 
Under perturbations, the director and the E field become 

n = (sin N, cos 0 sin $, cos tI cos 4); 
E = E, + E’; E’ = -V$ (1) 

where the perturbations 0, 4 and $ are functions of x, y 
and z;  use of Maxwell’s curl equation enables expression 
of the electric field perturbation as the gradient of the 
scalar potential $; a subscripted comma denotes partial 
differentiation. For linear perturbations, terms are 
retained to linear order in the governing equations and 
to second order in the free energy. At constant potential 
difference (V,) between the electrodes [27], the total free 
energy F is written as the sum of the volume and surface 

terms. 

F = jQ W,dQ + AW,(z = h )  + AW,(z  = -h): 

B B 
2 2 

rG = - 8 2  + - $ 2 ;  

where R is the sample volume, A the area of each sample 
plane, W, the volume free energy density, Wq the surface 
free energy density evaluated separately at the two plates; 
K , ,  K , ,  K ,  are, respectively, the splay, twist and bend 
elastic constants of the nematic; S,=sina and C,= 
coscc; the magnetic term fM takes one of two values 
depending upon the direction of application of H; B is 
the polar anchoring strength at the two surfaces; E * =  

E~~ - cI where cII and cl are, respectively, the dielectric 
constants along and normal to the nematic director. In 
the linear limit, the surface free energy is written as a 
term proportional to the square of the perturbation at 
the boundary (the perturbation gives the deviation of 
the director field away from the free axis). Terms corres- 
ponding to the surface elastic constants K ,  and K,, 
[ 1-41 have been ignored. Flexoelectricity [ 71 has also 
not been included. This may be a meaningful assumption 
if the applied E field is time varying with sufficiently 
high frequency. 

Maxwell’s divergence equation results by minimizing 
F with respect to $ holding other quantities constant: 

( 3 )  

Interestingly, the modification of E inside the nematic is 
caused by 0 and not d,. This is to be expected in the 
linear limit as d, lies in the yz plane, normal to E,. When 
$ is held fixed and F minimized with respect to 0 and 
$, one finds 

E A E x o N , 3  - F l $ , n -  Cl$.Y,. - q $ . z z  = 0. 

(4)  
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Static periodic deformation in nematics 715 

( 5 )  

a, = xA H: C," and a, = za H $  S, C,; 

or a,= and u,=O; 

b, = xAHtS; and b, = xAH:S,C,;  

o r b , =  - x A H ;  and b,=O. ( 6 )  
The boundary conditions resulting from this variation 
are 

- +K38 , ,+BB=Oatz=  f h ,  

+K3#, ,  + B# = 0 at z = +h. (7)  

The condition on $ is imposed by observing that E 
is always along x inside the glass plates (isotropic 
dielectrics). In the nematic, however, E is perturbed (1 ) .  
At z = f h, the interfaces between two dielectrics, the 
normal component of the electric induction (D,) should 
be continuous. In the glass plates, D, = 0 as D should 
be along x. Hence, D, should vanish at the two interfaces 
so that* 

E A E ~ , I ~ - E ~ ~ $ , , = O  at z =  f h .  (8) 
Clearly, 0 and 4 will not vanish at the boundaries when 
the anchoring strength is finite. The next sections con- 
sider different solutions of the governing equations 
(3)-(6) with boundary conditions (7) and (8). Even in 
the most general case, this reduces to the solution of an 
eigenvalue problem. In any given case, depending upon 
the assumptions, a subset of terms from (3)-(  5) is chosen 
for solution. Ex,  can be assumed to be positive without 
loss of generality as the transformation E x ,  + -Ex, ,  
0 + - 0, Q -+ ~ Q leaves equations (3)-( 8) unchanged. 
This is intuitively clear due to cylindrical symmetry in 
the x y  plane about the unperturbed director no. We 
assume that HIl = O  (except at the end of $4.1). 

The threshold for the aperiodic or homogeneous 
deformation H D  is deduced by assuming that the per- 
turbations are functions of z alone. The material is 
assumed to have opposite signs of and xA (this is true 
of M1 [21] and CCH-7 [22]). In the general case, all 
three perturbations are present. We choose the solution 
with 0 and 4 symmetric and $ antisymmetric relative to 

*As pointed out in reference [20] (see note [26] and also 
§ 5  therein), we do not explicitly enforce the condition of 
continuity of the tangential components of E at the boundaries 
z = + h  separating the two dielectrics. Again, due to the tacit 
assumption of infinite extent of the sample along x and y, 
restrictions cannot be imposed on electric field perturbations 
E! and Ey along the sample peripheries in the xz and y z  planes. 
These constitute limitations of the calculations presented in 
this work noting especially that the voltage between electrodes 
is assumed to be unchanged at V, under variations. 

z = 0. The ansatz for perturbations is 

where 'A, $A and $A are constants whose absolute 
magnitudes are not known; only the ratio of any two of 
them can be found. We ignore the other solution (having 
higher threshold) in which the perturbations have the 
opposite spatial symmetry. Equation (3) integrates to 
satisfy (8) identically and enables substitution for $,= in 
terms of d in ( 4 ) .  Solving ( 4 )  and ( 5 )  with (7), the 
compatibility condition for the HD threshold results, 

q4 - q2(GH + BE) + O H ~ E S , " ;  

where q satisfies the condition, 

Bh 
qcos q - q sin q = 0; q = -. 

K 3  

The dimensionless quantity q is the ratio between the 
semisample thickness h and the characteristic length 
K3/B; q measures to what extent the anchoring at the 
surface can balance the volume elastic torque. Equation 
(10) is solved numerically to obtain q for a given value 
of 17. When q>> 1, q ~ 7 ~ 1 2 ;  when q-0, q-0. For a 
material such as M1 [21], the H D  threshold HF with a 
stabilizing E, is found from (9) and (10): 

With (9) and (lo), the HD threshold E ,  for a material 
such as CCH-7 1221 with a stabilizing H, is given by 

For strong anchoring, the expressions in ( 1  1) and (12) 
approach the corresponding ones of [20]. 

3. Material (Ml )  with < 0 and xA > 0 
HI destabilizes the director orientation while E, has 

a stabilizing action. The magnetic threshold for instabil- 
ity is studied as a function of Ex,  and other parameters. 
When E, alone is impressed, the cylindrical symmetry 
about no gets broken along only one direction, x .  Once 
H, is also present in the x y  plane, the symmetry can be 
broken along yet another direction. Hence, three variet- 
ies of PD are studied--the xz  Mode (periodicity along 
x and perturbations depending on x and z); the yz Mode 
(periodicity along y and perturbations depending on y 
and z ) ;  the xyz Mode (periodicity in the x y  plane and 
perturbations depending on x, y and z). It is conven- 
ient to first of all discuss results for H, acting along 
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716 U. D. Kini. 

Y ( r=O).  As x vanishes, the magnetic coupling term 
connecting 0 and 4 drops out of (4) and ( 5 ) .  This causes 
rl, to damp out for both the .YZ and yz Modes. As both 
E, and H, break the cylindrical symmetry along the 
same direction, Y and y become symmetry directions in 
the xy plane. 

3.1. Results for  PD in M I  at ci = 0 
For the YZ Mode, for instance, solutions are sought 

such that 

where Q ~ is a dimensionless wavevector corresponding 
Lo a wavelength ?., = 2nh/Q,. As 2g >> 2h, the sample is 
essentially unbounded along x. Q, is not a function of 
coordinates but depends upon material and interfacial 
parameters. From (4). ( 5 ) ,  (7) and ( X )  the following 
compatibility condition results: 

(cosqi)1~7(d + P,") + ~z( t anhp , ) (d  -PI  Q?)1 
- q1 bin ql )(Dl Q Z  + 4:) = 0; 

2q: = - x, + (X, 2 + 4x2p 

2 p ;  = x, + (x: + 4x,)1!2; 

x, = QZ(p1O11 - (TE - j?1;>1 QZ); 
= Q Z ( P 1  + 1'1) - OH - U E i  

K 
(13) 

The only elastic constants associated with the xz Modc 
are K 3  and K , .  When Qx + 0, the condition in (13) tends 
to (10) corresponding to HD. To solve for the PD 
threshold, Ex, is fixed at a suitable value. With Q, close 
to Lero, Ihe lowest value of H ,  satisfying (13) is found. 
When Q,-O, H,(Q,)-,H, of (11). Variation of Q, 
shows that H,(Q,) diminishes with increase of Qx reach- 
ing a minimum H,, = HI(QPX) at Q, = Qpx. H, ,  is the 
.YZ Mode threshold and Q,, the dimensionless wavevec- 
tor at threshold: the dimensionless threshold for the xz 
Mode is 

p - - .  C1 . -2, 
1 - . 1'1 - 

Ell K ,  

vx = Hp,/HF. 

If r X  < 1, the s z  Mode is more favourable than HD. 
Before displaying the results, the following points must 
be noted. 

At a given 11, rs  and QPX are calculated as functions 
of Ex,. As Ex,  is diminished, r x  increases and QPX 
decreases. When Ex,  approaches a lower limit E,, r ,  + 1 
and QpS+O showing that E ,  is a critical point. For 
Ex, < E,. a solution of (13) yielding the xz Mode 
threshold does not exist; the xz Mode can exist as a 
solution only when a sufticiently strong stabilizing E, is 

applied along x. The physical explanation follows along 
the lines given earlier (S 3.1 of [ 201). 'l'he modification 
of E by the director perturbations can bring down the 
free energy of PD with respect to that of HD if the 
wavevector of PD takes a sufficiently high value. A n  
expression for E,  results from the method of Oldano 
er al. [ 111, by expanding the condition ( 1  3) in powers 
of Q,. The zeroth order term is identically the condition 
(10). The next term is proportional to QZ. Equating i t  
to zero and solving for E,,, one finds, 

47cK E L' 

c,c,Ah2 ' 
+ q' - 1 7 )  

A =  (14) 

where y is a solution of (10). As the perturbations 
involved have pure modal structure, the method o f  [ 2x1 
can also be employed to deduce the critical point 114). 

Clearly, E ,  is a function of q. Variation of q from a 
high value shows that E ,  increases monotonically with 
a decrease of q despite a diminution in q as per (10). 
This means, the range of existence of the xz Modc gcts 
curtailed (equivalently, the range of existence of HD 
expands) when the anchoring is weakened. For rigid 
anchoring, 17 >> 1, q z 4 2  and A z tA/tII so that E ,  takes 
the value E ,  given by 

E2 - ~--ci- . 

Ell h2 + 4, + v )  G -  

(15) 

which is exactly the expression found for rigid anchoring 
(see [20], $3.2). EM is employed to define the 
dimensionless stabilizing electric field 

RE = E,,,/E,. 

The results for the y z  Mode follow exactly as in 
( 13)-( 15) except that we replace K ,  by K ,  and employ 

ry = HPY/HF 

and QPy to denote corresponding quantities. The critical 
point E x ,  = E,> is given by [see (10) and (1411 

(16) 

In the limit of rigid anchoring, EL reduces to the field 
E ,  (see [2O]: 0 3.1). As EL < E G ,  the .yz Mode always 
exists over a broader range of E x ,  values than the s z  
Mode. Calculatioii at given q and RE shows that r y  < r ,  
and QPY > Q,,. It is clearly a consequence of K ,  (associ- 
ated with yz Mode) being less than K , .  Thus, the y z  
Mode is more favourable than the xz Mode for E,, > EL 
when HI acts along x. When Ex,  <EL,  only HD will 
form. 

For the xyz Mode, @ gels coupled elastically to 19 
despite a being zero and adds to the elastic free cnergy: 
but 4, does not cause modification of E. Hence, the xyz 
Modc threshold (if it exists) cannot be less than the 
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Static periodic deformation in nematics 717 

threshold of the xz or the yz Mode. The ansatz for the 
perturbations is 

9z 
h , dA cos -, sin - 

x sin [Q(CPxh+ S P . d ]  

so that the wavevector with amplitude Q mades angle p 
with the x axis. Substitution in ( 3 ) - ( 5 )  and use of (7) 
and (8) yields a compatibility condition from which one 
obtains H ,  as a function of Q and p. This defines a 
neutral stability surface. If this surface has a minimum 
HPXY=HL(Q~,, ,P~) at Q=QPxY,  p = p P  and if 
HpXy < H,, we say that the xyz Mode is more favourable 
than HD. 

For the .xyz Mode, the derivation of the compatibility 
condition is complex as it involves the solution of a 
cubic. It is, however, possible to obtain H,,,, Qpx, 
and pp numerically by the series solution method. 
Calculations are performed for the parameters of M1 
[ 21 ] at a reduced temperature of 0.9: 

(Kl,K2,K3)=(16.1,5.2,18.3) x 10-7dyne; 

zA = 1.39 x 1OP7emu; 

= 8.9; EL = 22.8; EA = - 13.9. (17) 

At CI = 0, the neutral stability surface shows two minima 
at pp = 0 and pp = 4 2  corresponding to the xz Mode 
and yz  Mode thresholds, respectively; at  these p values, 
QpXr coincides, respectively, with QPX and QPY calculated 
for the xz and yz Modes. Hence, the xyz Mode degener- 
ates into (either the xz Mode or) the yz Mode when H, 
and E, are parallel to each other. 

The nature of perturbations studied in this work must 
be clearly understood. As per (7) and (S), the perturba- 
tions do not vanish at the substrates. At the yz Mode 
threshold, for example, we have a solution which yields 
0 and $ varying periodically along y with wavevector 
QPY even at the substrates. The condition (8) has to be 
independently imposed for PD due to the finiteness of 
anchoring energy. For HD, however, (8) is satisfied 
automatically by ( 3 ) .  Thus, the boundary conditions for 
HD and PD are different for the present case. In 
principle, therefore, one can expect changes in the shape 
of the neutral stability curve as well as in the nature of 
the transition between H D  and PD-especially when 
anchoring is sufficiently weak. When the anchoring is 
very strong, 8 will nearly vanish at the boundaries; $,= 
will also become correspondingly small at the substrates 
as per (8) leading to nearly identical boundary conditions 
for HD and PD. Hence, results for strong anchoring 
should be qualitatively similar to those obtained earlier 
[20] for rigid anchoring. 

3.2. Results for PD in M I  at a # 0 
As with HD (5 2), PD involves all three perturbations, 

the presence of I$ being possible due to the magnetic 
cross coupling terms a+ and b, in the torque equations 
(4) and (5). The method of solution is similar for all 
three PD Modes. Consider first the yz Mode. With y 
dependence of the form sin ( Q ,  y /h) ,  (3)-( 5 )  can be 
reduced to a set of coupled ordinary differential equa- 
tions. As there are three equations, the method of 
solution by dependence of perturbations on exp (iqzlh) 
(as in $3.1) ,  leads to a cubic in q with three roots, 
q l ,q2 ,q3  some of which may be real and the others 
complex. Each perturbation has to be written as the 
sum of three terms and (7) and (8) lead to the vanishing 
of a third order determinant as the compatibility condi- 
tion. For reasons of convenience, the set of ordinary 
differential equations are solved numerically by the series 
solution method which again leads to a similar compat- 
ibility condition. We study, in particular, the solution 
with 0 and 4 symmetric and $ antisymmetric relative to 
the sample centre. At a sufficiently elevated RE and a 
given magnetic tilt x, rY and QPY can be determined from 
the minimum of the neutral stability curve. The reduced 
magnetic threshold and the dimensionless wavevector 
can be studied as functions of different parameters. 

In 9: 3.1 a true critical point is found between PD and 
H D  when 111 acts along x. Calculation shows that the 
PD threshold equals the HD threshold and the wavevec- 
tor of periodicity vanishes in the same limit when the 
critical point is approached. The question that arises is 
whether this is true when a # 0 .  The answer becomes 
clear when results are displayed for the different PD 
Modes. We assume for the moment that the critical 
point exists and set out to determine it mathematically. 
The method of [29] is well suited for the purpose. The 
ansatz for yz Mode perturbations with the appropriate 
dependence on y and z is substituted into (2)-( 8). Using 
(4)-(8), F is calculated upto second order in Q, such 
that F = F,, + F,Q:. With the HD threshold condition 
(lo),  F, vanishes identically. Using (9), gH is expressed 
in terms of gE at the critical point. The requirement that 
F, = 0 leads to the critical condition for the yz  Mode: 

K,S:(qZ - uE)’ + q2C2(Kzq2 - K~AcT,) = 0 (18) 

where q satisfies (10) and A is defined in (14). When 
a= 0, (18) reduces to (16) an we have only one critical 
point. For general (nonzero) values of a, (18) yields two 
critical values for oE: 
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718 U. D. Kini 

The critical fields denoted by Eyl and E,, (with 
El l  > E Y 2 )  determine the range of existence of the y z  
Mode to be E,, < Ex,  < EY2.  When the quantity under 
the root sign is positive, the roots are both real 
and unequal. The roots become equal when @ = a y  
corresponding to cE = gY such that 

q2(2K2 - K3A) 
’ G y =  

K:A2 
tan2 CAY = 

4K,(Kz - K3A)’ K3A 
(20) 

Obviously, the y Mode cannot exist for a > ay .  
Equations ( 18)-( 20) reduce to their counterparts for 
rigid anchoring in the limit A +&,/el . 

Results for the xz Mode can be obtained by interchan- 
ging K ,  and K ,  (equivalently, p2 and :I,) in the expres- 
sions and equations for the y z  Mode. The critical 
cquation for the YZ Mode becomes 

K,S;(q’ ~ G ~ ) ~  + q2Cz(Klq2  ~ K 3 h E )  = 0 (21) 

yielding the critical fields Ex, and E,, determined from 

_ _  % 
q2 82 s,” 

g ( 4  * (s%) -f(.)PZs:)”” 
- 

The limit of existence of the xz Mode at which Ex, and 
E,, coincide is found to be CI = ax occurring at G~ = G, 

with 

For M1 parameters (17), ax > a,; the a range of existence 
of the xz Mode is wider than that of the yz Mode. 

Obviously, the two will coincide when the splay and 
twist elastic constants are equal. 

a, and a ,  are functions of the anchoring strength. The 
critical fields for the two PD Modes are found from (19) 
and (22) after q is calculated from (10) for a given y. 
Suppose h = 250pm. With B = l0-,ergcrn2, y = 136. 
This corresponds to strong anchoring. Decrease of B by 
two orders of magnitude makes q = 1.36 for the same 
sample thickness; this can be regarded as weuk anchoring. 
Calculations are presented for one other y value (see 
figure 1 (c)) for clarification of some results, but this value 
is unrealistically small. The critical fields obtained from 
(19) and (22) are scaled by EM and plotted in figures 
1 (a), 1 ( h )  for two y values. The presence of the curves 
1’ and 2‘ as well as a part of curve 1 being represented 
by a dashed line will both be explained in due course. 
For the present, the following points may be noted with 
special reference to figure 1 (0). (i) The region of existence 
of the yz Mode ( Y Z )  is almost completely surrounded 
by that of the x z  Mode ( X Z )  except for weak enough 
E, where only the yz Mode survives. (ii) At fixed Ex, ,  a 
given PD Mode is extinguished when CI exceeds a limiting 
value which can be read off from the intersection of a 
suitably drawn horizontal line with the corresponding 
phase boundary. The a limits for the xz and yz Modes 
can be computed by solving (21) and (18),  respectively, 
at the given G ~ .  (iii) The yz Mode exists in the low c( 

range and the xz Mode in the higher CI range [con- 
sequence of (i)]. (iv) When a is high enough (H, is 
applied sufficiently away from Eo), only HD exists 
regardless of the strength of the stabilizing E,. H D  alone 
survives for wcak enough E, also. (v) In the overlap 
region (marked with X Z  and YZ) ,  both PD Modes exist 
as solutions. The PD Mode with lower threshold 
is taken to be the more favourable Mode by actual 

I \\‘(\ HD 

0.0 a 0. 
3 

i 

Figure 1. Initial uniform orientation of the nematic director along z .  The sample planes are at z = * / I .  Material parameters are 
those of MI (17) so that H, destabilizes the orientation while E, (applied along x) stabilizes it; a is the tilt of H, away from 
E, in the xy plane. The y z  and xz Modes are periodic deformations with periodicity along y and x, respectively. Plots of R, 
(curves 2 and 2’) and R ,  (curves I and 1’) versus a (radian). Curves 1 and 1’ correspond to a second order and a first order 
transition, respectively, between HD and the y z  Mode, Curves 2 and 2’ are similarly defined for the xz Mode. R, is the ratio 
of the critical field for the xz Mode and EM (15). R,. is the critical field for the y z  Mode scaled by EM. Curves 1, 2 result from 
(19), (22 ) ,  respectively; the primed curves are obtained numerically. The regions S Z ,  YZ and HD correspond to, respectively, 
the xz Mode, the yz Mode and the aperiodic or homogeneous deformation. The dashed portion of a curve is of no physical 
significance. q = Bh/K,  where B is the anchoring strength at  the boundaries and K ,  the bend elastic constant. The diagrams 
are drawn for q = ( a )  136, (h) 1.36 and (c)  0.136 (see $3.2).  
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Static periodic deformation in nematics 719 

computation (see figures 2-5). (vi) The o! ranges of 
existence of both PD Modes shrink when q is diminished 
(compare figures l (a )  and l(h)).  (vii) Each diagram is 
valid for a particular value of 9 which, in turn, depends 
on the product Bh. Hence, figure 1 (b) is equally valid 
for B = ergcm-2 if the sample thickness is reduced 
by a factor of hundred. This scaling holds for other 
results too. (vii) For a given q,  the critical curves for the 
xz and yz Modes intersect at o! = aB and Ex, = E g .  From 
(19), W), (14 )  and (16), 

Figures 2-5 contain plots of PD thresholds and 
wavevectors as functions of different parameters. Results 
are presented for only the xz and y z  Modes. Whcn a is 
not zero, the xyz Mode threshold can be calculated as 
described in $3.1. The neutral stability surface shows a 
minimum H ,  = H,,, at a nontrivial value of pp which 
varies with both RE and a. For the parameters (17), the 
xyz Mode threshold is higher than the thresholds of the 
other PD Modes; hence, results are not presented for 
the xyz Mode. The variation of the xyz Mode threshold 
and related parameters is analogous to that found for 
rigid anchoring (see figures 2 and 3 of [20]). 

The results of figures 2 and 3 for strong anchoring 
are in accord with figure 1 (a) and are also similar to 
those of [20]. When z is close to zero (see figures 2(a)  
and 2 (b)), the second critical point is extremely high, 

0.0 20.0 0.0 15.0 

5.0 1 

Figure 2. Plots of reduced thresholds of the xz and yz Modes 
( r x ,  r y )  and the respective dimensionless wavevectors 
(QPX, Qpy) as functions of RE for two values of the magnetic 
tilt ct (see caption of figure 1 for details). Strong anchoring 
with q = 136. Curves 1 and 2 represent the yz and the xz 
Modes, respectively. ct = (a, h)  001, (c,  d )  0.2 radian. The 
results are in agreement with figure 1 (a) (see 0 3.2). 

hence the behaviour of r and QP is similar to that for 
a = 0. With increase of RE from the lower critical point, 
r diminishes from 1 and QP increases from zero. The xz 
Mode threshold is higher than that of the yz Mode, 
hence only the yz Mode is of real interest. This means, 
the stripes will have periodicity along y for all RE. 

The character of variations of r and QP changes 
drastically when a is higher (see figures 2(c) and 2 ( d ) ) .  
The presence of two cut offs for both PD Modes is 
evident and these can be read off from figure 1 (a) by 
drawing a vertical line at the requisite a value and noting 
the intersections with the respective phase boundaries. 
While the y z  Mode is more favourable for weak E,, the 
xz Mode should be observable for stronger stabilizing 
fields. Should this crossover occur, it will manifest 
through a discontinuous change in the stripe width as 
well as direction of periodicity. For high enough RE 
when even the xz Mode has been quenched, only H D  
will exist. 

The dependence of r and QP on o! at a fixed strength 
of the stabilizing E, is again in accord with figure 1 (a). 
A given PD Mode gets quenched when a exceeds the 
limit which is got from figure 1 (a) by noting the intersec- 
tion of a horizontal line drawn at the requisite RE value. 
At a given oE, the limits o!ti and ctL for the xz and 
yz Modes are obtained by solving (21) and ( l 8 ) ,  
respectively: 

cos2 aG = - K 2 ( q 2  - oE)2 -.  
K2(q’ - oh)’- K,q4 + K3AoEq’’ 

0 0  0.3 0.0 0.7 

Y 
a a 0.7 0.3 0.0 

0.0 I 0.0 
0.0 

Figure 3. Variation of dimensionless magnetic thresholds and 
wavevectors for xz (curves 2 )  and yz (curves 1) Modes 
with the magnetic tilt angle. Strong director anchoring 
with q = 136. RE =(a, b)  10, (c, d )  2. Both PD Modes get 
extinguished when CI is sufficiently high. The critical points 
can be read off from figure 1 (a) (see 0 3.2). 
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720 U. D. Kini. 

Interestingly, aG at R E  = 10 is less than its value at R,  = 

2 (see figures 1 ( a )  and 3). The yz Mode is found to exist 
for low 2 (H, close to the x axis) while the xz Mode 
dominates in the higher a range. When a is sufficiently 
high even the xz Mode gets quenched and only HD 
should be possible. The crossover should again be her- 
alded by a discontinuous change in the wavevector. 
Some of these results can be interpreted as explained 
earlier (see $3.1 and 3.4 of [20]). 

Figures 4 and 5 depict results for the weak anchoring 
case. The variation of r and QP with RE for Y = 0.01 has 
not been included. The curves are very similar in shape 
to those of figures 2 (a) and 2 (b). Figure 4 is drawn for 
two a values. both of them somewhat high. The vari- 
ations of rX and QPS are qualitatively similar to those 
found in figures 2 and 3; however: the yz Mode threshold 
and wavevector exhibit a somewhat different depend- 
ence. The reason for this becomes clear by studying the 
neutral stability curve for the yz Mode when anchoring 
is weak and a reasonably strong E, is imposed: say, 
E,, = El .  

Then, the compatibility condition for the JJZ Mode 
yields H,(Q,) as a function of Q , .  When a is close to 
zero (say. 0,001 radian), H ,  diminishes continuously with 

[I I: R, ; o  3 C O  R. 5.c 

I- igure 4. Case of weak anchoring with t i =  1.36. Details as 
in  figure 2 with 2 = (a, h)  0.1. (c, r l )  0.2 radian. In figure 4 (u) ,  
the R, axis is not labelled with numbers for convenience. 
Curves 1 and 2. represent plots of true minima of the 
neutral stability curves for the y z  and xz Modcs. respcct- 
ively. Curve 1' is the locus of a weak maximum in the 
neutral stability curve for the yz Mode and meets the RE 
axis (see figure 4(h) )  at a pseudo critical point (#). For 
stronger electric strengths, the y z  Mode threshold and 
wavevector are both double valued functions. The true 
upper cut off field for the yz Mode (where the y z  Mode 
and HD have equal magnetic threshold) is represented by 
** and can be read off from curve 1' of figure I (hi 
(see $3.2). 

increase of Q, and the true minimum at Q, = QPY is the 
yz Mode threshold. When x is higher (say, 0.1 radian), 
the shape of the neutral stability curve remains 
unchanged as long as the stabilizing E, is not very 
strong (typically, oE < oY of equation (20)). This means, 
decrease of E x ,  from El leads to the critical point E,, 
on the lower branch of the curve 1 in figure 1 ( h )  (see * 
in figure 4(a)). With QPy as the order parameter: the 
transition from yz Mode to HD is one of second order. 
When El is such that C T ~  > o,, the shape o f  the neutral 
stability curve changes. Increase of Q, from zero leads 
first to a weak maximum H ,  = H,(Q,) at Q, = Q1, say; 
H ,  > H,. Further increase of Q ,  leads to decrease in 
H,(Q,) and a true minimum H,, at some QPY where 
HI(QPY) < H,: this is the true yz Mode threshold. In 
figures 4 (a) and 4(b), both extremes have been plotted 
with curves 1 corresponding to the minimum and curves 
1' representing the maximum. When E x ,  is increased 
above E l ,  H I  and Q, diminish; when E x ,  approaches 
the upper critical value E,,  (see #, figure 4(a)), HI + H F  
and Q, +0. But H , ,  and QPY exist beyond Ex,  = E,, 
with H,, equalling HF at some E,, > Ey1; but here, HPY 
is not zero (see figure 4(b)); see ** in figure 4(u)). This is 
the true upper cut-off point for the j'z Mode as beyond 
this point, H,, > H,. This transition from the yz Modc 
to HD is, therefore, one of first order. Beyond the true 
cut-off, the yz Mode exists as a solution over a range of 
Ex,  but is of only academic interest. The behaviour at 
a = 0.2 radian is similar (see figures 4(c) and 4(d)). 

Interestingly, the behaviour of the Y Z  Mode threshold 
and wavevector is similar to that found in figure 2 even 

3 3 c 4  

/'] , ', 
\ 

ix 0.' 
,? 'i 1 ~ ~ ~~ ~ ! 1- ~' 

3 0  

Figure 5. Weak anchoring with v = 1.36. Details as in ligure 3 
for plots of thresholds and wavevectors vcrsus the mag- 
netic tilt angle a. RE = (a ,  b) 10, (c, d )  2. Compare with 
figure 1 (h). Curves 1.  1' and 2. have the same significance 
as in figure4. The transition from the yz  Mode to HD 
with increase of a is discontinuous (see 5 3.2). 
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Static periodic defijrmution in neniatics 72 1 

at q = 1.36. The general effect of decrease in q on either 
PD Mode is a diminution of wavevector and enhance- 
ment of threshold relative to H,. Due to the reasons 
mentioned in the previous paragraph, the upper cut off 
for the y z  Mode has to be determined numerically. This 
is represented by curve 1' it1 figure 1 (b). It is seen that 
curves 1 (corresponding to EY1) and 1' coalesce when oE 
decreases to oy .  Similar departure is found in the behavi- 
our of the y z  Mode for CI variation with weak anchoring 
(see figure 5). 

When the anchoring is weak neither 9 nor lc/,z vanishes 
at the boundaries. For PD, $,z has the same periodic 
modulation as 8. As < 0, the perturbation $,= actually 
has a destabilizing effect. With this destabilizing influence 
varying in phase with 8, one can expect departures in 
the behaviour of both the PD Modes with respect to 
the strong anchoring limit. Both Modes obey boundary 
conditions that differ from those imposed on HD. In 
both cases, explicit limits are not imposed on electric 
field perturbations along sample peripheries. It is, there- 
fore, surprising that the xz Mode is not affected at q = 
1.36. This doubt is removed by looking at figure 1 (c) 
drawn for a very small value of B; even the xz  Mode 
undergoes a first order transition at its upper cut-off 
(curves 2' in figure 1 (c) represent the true cut-off for the 
xz  Mode); again, curves 2 and 2' coalesce near gE = ox 
of (23). Detailed calculations are not presented for this 
unrealistic value of q. But interestingly, the region of 
existence of the x z  Mode is now surrounded by that of 
the yz Mode. 

4. Material with zA > 0, xA < 0 
In such a material, H, becomes a stabilizing field 

while E, tends to destabilize the initial orientation. 
CCH-7 is a typical material having the following 
parameters at a reduced temperature of 0.932 [22]: 

(Kl,K,,K,)=(7.25,3.48, 11.46) x 10-7dyne; 

xA = -3.22 x 10-8emu; 

= 8.01; EL = 3.72; &A = +4.29. (26) 

The effect of H, applied along symmetry directions ( x  
and y )  is first studied. 

4.1. Results for PD at ct = 0 and ct = n/2 
Let c1 be zero. Solutions can be sought for all three 

PD Modes. For the x z  and yz Modes, I$ gets decoupled 
and damps out. The threshold condition (13) is still 
valid for the xz  Mode except that now we determine 
E,,(Q,) as a function of Q,. When H ,  is high enough, 
Ex,  is close to E, of (12) when Q, is small. Increase of 
Q, leads to a diminution in Ex, and a minimum at 
E,, = Exo(QPX) at some Q, = QPX which is the x z  Mode 
threshold. The xz  Mode exists as a solution if H ,  > H,; 

for H ,  < H,, only HD prevails. For rigid anchoring, 
H ,  + Hc (see equation (27) of [20]). The definitions are 
as follows [see also (lo)]: 

H ,  can be used to measure H ,  in terms of the reduced 
field R,  = H,/H, while the xz  Mode electric threshold 
can be represented by rx = Ep,/EF. With decrease of u, 
the ratio H , / H ,  increases; i.e., the domain of existence 
of HD expands relative to that of the xz  Mode with 
weakening of the director anchoring. 

The yz Mode is treated similarly with K 2  replacing 
K,.  The critical condition for the existence of the yz 
Mode is that H ,  > H ,  with 

It is known [20] that H ,  is not real for the parameters 
(26) when anchoring is rigid. Thus, the yz Mode can 
exist as a solution even at HI = 0 with a threshold lower 
than that of HD. As K ,  < K , ,  the yz  Mode threshold is 
found to be lower than the x z  Mode threshold even for 
strong H,. Hence, the x z  Mode is of only academic 
importance when H, acts along x.  A similar conclusion 
follows for strong anchoring. But H: becomes positive 
when the anchoring is weakened sufficiently; then a 
critical point exists between the yz Mode and HD; still, 
this point is lower than H,. From (28) and (lo), this 
cut-off value qc of q is deduced as the solution of 

K 3 A =  K , ;  (29) 

the yz Mode has a critical point if q<qc .  For the 
parameters (26), qc = 3.158. 

The yz Mode threshold E,, = Exo(QPY) occurs at the 
minimum Q, = QPY of the neutral stability curve. We 
employ the dimensionless quantity ry = Epy/EF to meas- 
ure the yz Mode threshold. The xyz Mode is again of 
no interest as it degenerates into either the xz  Mode 
(wavevector along x) or the y z  Mode (wavevector along 
y ) .  The yz Mode, therefore, remains the physically real 
PD Mode at a= 0. Figure 6 represents these conclusions. 

The case of H, acting along c1 = 4 2  can be treated as 
before with 4 damping out and leaving 8,$. As a, 
vanishes in (4), the S-$ pair obeys the equations corres- 
ponding to H ,  = 0. The x z  Mode cannot exist in the 
absence of HI. Hence, the yz Mode will prevail as long 
as the anchoring is not very weak. If q < qc, H D  will 
occur involving 8 and $. 
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722 U. D. Kini. 

Figure 6. Initial uniform homeotropic alignment along z 
bctween plates z = */I .  The material is CCH-7 (26) with 
xA t O  and i:* > O  so that E, along x destabilizes the 
orientation and H I  in the xy plane stabilizes it. Particular 
case of H, acting along x axis (magnetic tilt angle r = 0). 
The UJT Mode degenerates into either the YZ Mode 
(curves 1 )  or the JZ Mode (curves 2).  Plots of the reduced 
electric thresholds rx. ry and the dimensionless wave- 
vectors Qpx, QPY as functions of the reduced stabilizing 
magnetic field, R ,  for strong anchoring (a,  b) 11 = 218 and 
weak anchoring ( c , d )  q = 2.18. A dashed curve represents 
results of no physical interest (see $4.1). 

The results of this section are valid for a material such 
as 5CB L20] which has positive anisotropies provided 
that a stabilizing H,,  is assumed to act along z (obviously, 
with H ,  = 0). The definitions for the critical fields in 
(27) and (28)  hold with a negative sign in front of zA. 
With these changes, figure 6 is identically valid for a 
hypothetical material having the same parameters as 
CCH-7 (26) but with positive. We again assume that 
HI, = 0. 

4.2. Resultsfor PU ut genevul vulues of a 
Computation of thresholds for (26) shows that the xz 

and yz Modes have higher thresholds than the xyz  
Mode when x takes general values. Hence, only the xyz  
Mode is studied in this section. For (26), the neutral 
stability surface of the xyz Mode shows a minimum 
at E,,,. E X o ( Q P ,  ,up) corresponding to the reduced 
threshold 

r x Y  = E P x Y / E , .  

For zero magnctic field as well as for HI impressed 
along symmctry directions (a = O,n/2. TC),  the xyz Mode 
degenerates into the j ’z  Mode (i.e., ,up + 4 2 ) .  

Assuming a critical point for the transition between 
the .ryz Mode and HD, this should occur in the limit 
QpXV+O and EpXr+EF. In this limit, p and x assume 
values j i C  and a,, respectively. Using the method of 

[ZS], the critical condition becomes [see ( lo),  (19)  and 
(22) for definitions] 

and this relates gH, CI and p. For a given magnetic tilt x. 
(30) can be used to find the critical value of H I .  When 
R,, is fixed, (30) determines the z range of existence of 
the ryz Mode. For the moment, (iH is assumed fixed. 
Solving for [L, we can express S,, as a function of oII and 
a. Real solutions cease to exist when a > a, with 

A t  given o,[ and q,  q is found from (10); then a, and pC 
can be calculated if they exist. The limiting value for a, 
is n/2. Then, sina, is unity; clearly, then is n/2 (the 
xyz Mode degenerates into the y z  Mode). From (31) ,  
this leads directly to the definition of q, (29). Thus, thc 
x y  Mode (as well as the y z  Mode) will have a critical 
point only if q < qC. For q > qc, these Modes will exist 
as solutions over the entire CI range regardless of the H, 
imposed. As stated earlier, the y-. Mode threshold is 
higher than the xj ’z Mode threshold for general t ~ .  

Figure 7 displays the s y z  Mode threshold and wavc- 
vector as functions of the magnetic tilt angle CI for two 
different RH. Figures 7 (a)-(c) correspond to strong 
anchoring and the results are similar to those obtained 
for rigid anchoring (see figures 4(d ) - ( f )  of [ZO]). The 
.uyz Mode exists over the entire CI range and turns into 
the y z  Mode when H, acts along the symmetry direc- 
tions. When a is small, the stripes should become sharper 
with increase of RH. The curves for threshold and 
wavcvcctor amplitude are symmetric about x = n,i2. The 
shapc of the pp curve results from the need to preserve 
the value of the term S,C,S,C, under a reflection in the 
2 = 7c/2 line. 

Figures 7(d ) - ( f )  are drawn for weak anchoring with 
4 < !lc. The x y z  Mode now has a critical point with HD. 
For the given R,, the (aC,  pc)  coordinates of the critical 
point are well represented by (31). Interestingly, ac 
increases when the stabilizing HL becomes weaker. 
Hence, the shape of the phase diagram for the . x j z  Mode 
should be similar to the curves of figure 1. 

Figure 8 summarizes the companion calculations 
for the variation of the stabilizing magnetic strength. 
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0.0 3.0 
/ 

0.0 a 0.5 

4:kb) 
1.5 

L 

0.0 3.0 

4'0!,& QP 

0.0 
0.0 cr 0.5 

:p 
I 0.5 

0.0 3.0 

0.5 

0.0 a 0.5 

Figure 7. Details as in figure 6. Variations of the reduced xyz Mode threshold (rxy), dimensionless wavevector (QpXy) and tilt of 
the wavevector with x axis (pP) with magnetic tilt angle a; the parameters (26) are those of CCH-7. The xz and y z  Mode 
thresholds are not shown as they are higher than the xyz Mode threshold. q = (a, b,c) 218 (strong anchoring); ( d , e , f )  2.18 
(weak anchoring with q < qc of equation (29)). Curves are drawn for R, = (1) 10, (2) 5. For a given R,, the xyz  Mode ceases 
to exist when LY > ctC (31) provided that the anchoring is weak enough; only HD will remain in the higher CI range. The 
parameters of the critical point are in agreement with (31) (see 94.2). 

0.98 

r 

0.92 

r 2.0 

QP 

I : ,  
I . L  

0.0 20.0 0.0 20.0 0.0 20.0 

0.8 
0.0 Rt. 20 .0 .0 

'Ilk 
0.2 20.0 

c.c RH 

Figure 8. Details as in figures 6 and 7. Plots of rxy, QpXy and ,up as functions of R,, the reduced stabilizing magnetic strength. 
q = (a, b, c) 218 (strong anchoring); q = (d ,  e, f )  2.18 (weak anchoring). In (a, b, c), the magnetic tilt angle o! = (1) 0.4, (2) 0 8  radian. 
In (d, e , f ) ,  a = ( 1) 0.05, (2) 0.2 radian. As < qc of (29) in (d, e,,f), the xyz Mode has critical points with HD. The parameters 
of the critical points can be calculated from (31) ($4.2). 

Diagrams have not been presented for low LY where the 
variations of rxy and QpXy are found to be similar to 
those for the yz Mode in figure6. Results for strong 
anchoring (figures 8 (a)-(c)) closely resemble those 
obtained for rigid anchoring (see figures 4(a)-(c) of 
[20]). The xyz Mode exists for all values of RH. When 
R ,  is high, pP+c1; i.e., the direction of the wavevector 
approaches that of H, in the xy plane. No critical point 
exists between xyz Mode and HD. For weak anchoring, 
the q chosen is less than qc of (29). Critical points now 

exist between the xyz Mode and H D  (see figures 
8 ( d ) - ( f ) ) .  At CI = 005 only the lower point is in evidence; 
both points are seen when LY is higher. The critical values 
R, of RH at a given a can be calculated from (31) by 
solving for oH in terms of a; clearly, pc is given by (31) 
with LY being written for L Y ~ .  The critical points so 
calculated agree well with those found in figure 8. While 
the upper critical point varies considerably with a, the 
lower one does not seem to change much. This again 
indicates the possible shape of the phase diagram. 
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1" D 

3 ,2 h 1.2 0 0 a 15 

Figure 9. Phase diagrams for the xyz Mode in the R,-x 
plane. At a given magnetic tilt angle a, R, is the scaled 
critical field betwcen the xyz Mode and HD. Plot of R, 
versus a gives the phase boundary separating the xyr 
Mode and HD. Also plotted is p ,  the tilt angle of the xyz 
Mode wavevector with x axis at the critical point. Rc and 
pc can be calculated from (31). = (u )  1.18. (h) 3.01, 
(c) 3.15. In ( A ) ,  tic is plotted for 4 =(1)  2.18, 
( 7 )  3.01. ( 3 )  3.15. It should be remembered that parts of 
the pc curves are drawn for low values of a which are not 
rcprescnted in figures 9(a)-(c) (54.2). 

The phase diagrams for the xyz Mode are shown in 
figure 9 (a)-(c) for different q values lower than qc (29). 
The close resemblance with figure 1 is evident. With 
(31), the corresponding values of ,uc are also calculated 
(see figure 9(d ) ) .  The a range of the xyz Mode expands 
when q increases towards qc (see figures 9 (u)-(c)). 
Variation of a at a given R, value yields one critical 
point; variation of R, at a fixed a may yield two critical 
points if z is sufficiently high. 

When the anchoring is weak, thc y z  Mode behaves 
(see figure 10) in a way similar to that found in 5 3.2 for 
a different class of PD. The curves for the xz and yz 
Mode are shown with dashed lines as both Modes are 
unfavourable compared to the xyz Mode. The transition 
between the s z  Mode and HD is one of second order; 
this is also true for the x y z  Mode. In the low R, region. 
the JT Mode has a true critical point with H D  (see 
figures 10(a) and lO(6)). The transition from the 4;' 
Mode to HD in the higher R ,  range becomes one of 
first order. The transition between the yz  Mode and H D  
with a variation (see figures 1O(c) and lO(d)) is also 
found to be of B similar nature. 

5. 
model 

The mathematical model of [ZO] developed for rigid 
anchoring has been extended to the case of weak 

Conclusions and limitations of the mathematical 

105 

r 

C.85 

,, 1 0 
1 '  ,I -,, 

Figure 10. Illustration of the variation of the thresholds and 
wavevectors for the JZ Mode (curves 1. l ' ) ,  the xz Mode 
(curves 2) and the xyz  Mode (curves 3).  Curves 1' indicate 
regions where the yz Mode threshold and wavevector are 
double valued. Compare figures 10(a) and lO(h) with 
figure 4, and figures 1O(c) and 10(d)  with figure 5. Weak 
anchoring with '1 = 2.18. In (a,h). x =0.1 radian. In (r. .d),  
RH = 10. When the anchoring is sufficiently weak. the 
transition between HD and the yz Mode can become 
discontinuous (see 54.2). 

anchoring of the Rapini-Papoular type with both sur- 
faces having identical anchoring strengths. The occur- 
rence of PD under the action of crossed E and H fields 
has been studied with both fields applied in the plane of 
the sample. Results can be presented in scaled form 
through suitably defined reduced fields and wavevectors 
using the dimensionless parameter 9 of (10) to measure 
the anchoring strength. For a given anchoring strength 
at the surfaces (i.e., for a given surface treatment), results 
for weak anchoring can be simulated in thinner samples. 
The materials chosen [ M l  (17) and CCH-7 (2611 have 
anisotropies of opposite sign. When is high enough. 
all conclusions are qualitatively identical to those of 

In M1, PD is caused by the destabilizing action of 
H, provided a stabilizing E, of suitable strength is 
present. The direction and amplitude of the periodicity 
wavevector change discontinuously when the tilt of HI 
with E, is changed in the sample plane. PD is completely 
suppressed in favour of H D  when the magnetic tilt 
increases beyond a certain limit; the situation is similar 
when the applied stabilizing H, is either too strong or 
too weak. Thus, there exists at least one critical point 
between PD and HD with the transition between PD 
and H D  at the critical point being one of second order. 
In CCH-7, on the other hand, the E, induced PD 
can exist even in the absence of a stabilizing H,; the 
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wavevector amplitude and orientation change continu- 
ously with magnetic tilt. There is no critical point 
between PD and HD. Tentative explanations for these 
results have been given in [20] in the rigid anchoring 
limit. 

Reduction of y by two orders causcs the range of 
existence of PD to shrink in both materials; this deleteri- 
ous effect is similar to that predicted for other classes of 
PD [ll]. When H ,  is varied at sufficiently high mag- 
netic tilt, the transition between PD and HD at the 
higher field limit is found to be one of first order in M1. 
A possible reason for this is the enhanced difference 
between the boundary conditions for PD and HD caused 
by weak anchoring; the PD threshold cannot remain 
single valued when the upper critical point is 
approached. Phase diagrams contrast the predicted and 
true phase boundaries between PD and HD. The effect 
on PD in CCH-7 is similar. If y is less than a certain 
value qc, a critical point exists between the xyz  Mode 
and HD; the direction of the wavevector can take 
non-trivial values at the transition point. 

With the assumption of equal anchoring strengths at 
the boundaries, perturbations with definite spatial sym- 
metry can be studied. The independent solution with 
higher threshold and opposite spatial symmetry can be 
left uninvestigated. If the sample walls have different 
anchoring strengths, the boundary conditions at the two 
surfaces will be such that the governing equations will 
not support solutions with pure symmetry. Each per- 
turbation will be the sum of two parts-one odd and 
the other even relative to z = 0 so far as z variation is 
concerned. This mixing up should lead to an increase in 
the PD threshold relative to the H D  threshold and a 
curtailment of the range of existence of PD. In the case 
of CCH-7, for instance, a critical point between the xyz 
Mode and H D  may emerge if one sample plane has 
sufficiently weak anchoring even when the director is 
strongly anchored at the other plane. 

Linear perturbation calculations are valid only upto 
the threshold. Possible effects occurring beyond thresh- 
old have to be separately investigated. As noted already, 
all boundary conditions on the electric field are not 
imposed, Surface elastic constants are not included; 
hence, the results may hold only for sufficiently thick 
samples. The nematic is assumed to be an insulator with 
no free charges (ionic impurities). This is generally not 
true of commercially available material. The possibility 
of EHD convection [23] occurring in the place of the 
static periodic distortion has to be studied with the full 
set of governing equations including velocity perturba- 
tions etc. Of relevance now will be the sign and mag- 
nitude of the electrical conductivity anisotropy. 
Flexoelectricity has been ignored. With imposed a.c. 
electric fields of suitable frequency, this may be a reason- 

able assumption even with weak anchoring (if the dielec- 
tric constants are insensitive to the frequency of E). With 
a d.c. field, however, the conclusions of this work 
will be of no significance as H D  may set in without 
threshold [ 291. 

A conducting nematic may not support only EHD. 
For suitable parameters (material parameters, anchoring 
strengths, field directions and amplitudes, frequencies 
etc.), the positive feedback mechanism necessary to 
produce EHD may not work. Then static distortions 
induced by E may become possible [24,25]. The equa- 
tion of charge continuity is used instead of the Maxwell 
divergence equation to account for the effect of director 
perturbations on E. At the sample planes, the vanishing 
of the z component of the current will yield the boundary 
condition instead of (8). The dielectric anisotropy will 
also be operative in coupling the director and electric 
fields. This presents a parallel stream of investigation 
where both conductivity and dielectric anisotropies 
determine the existence of PD. Preliminary calculations 
show that the product of the two anisotropies plays a 
decisive role in influencing the results. As conductivity 
is a sensitive function of the a.c. frequency, it may be 
possible to control the occurrence of PD by varying the 
frequency. With the dependence of anchoring strengths 
on the presence of conductivity [26], the study of weak 
anchoring will gain a new dimension with frequency 
entering as an additional parameter. 

The continuum theory employed in this work is 
strictly valid at temperatures sufficiently removed from 
phase transitions. Recent work [ 301 reports theoretical 
studies on the nematic-isotropic phase transition in 
samples of finite thickness having weak anchoring at the 
boundaries. Some of the phase diagrams resemble those 
of figures 1 and 9. Certain conclusions such as the 
disappearance of the bulk transition for a critical sample 
thickness are also strikingly similar (see definition for 
yc). This accord is duc to similarities in the forms of 
the free energy and governing equations as well as in 
the boundary conditions. More detailed comparisons 
between the two works will be attempted in future. 
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